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A general steady solution of cylindrically symmetric form is obtained for 
equations that define the motion of a magnetizable incompressible nonconduc - 

ting fluid in a homogeneous magnetic field rotating at constant angular veloc - 
ity. The obtained solution is used for determining the velocity and internal 

moment of momentum of a magnetizable fluid between two coaxial cylinders 
rotating at different angular velocities. lt is shown that in the case of fixed 
cylinders a fluid posessing an internal moment of momentum is in motion, 

unlike the conventional viscous fluid. various limit cases are considered when 
either the inner or outer cylinder is absent, when one of the cylinder is fixed 
and the other freely rotates, and when the two cylinders freely rotate. 

Finely dispersed suspensions of ferromagnetic particles represent an example of 

magnetizable fluids. Orderly rotation of such particles (induced, for instance, by a 

rotating magnetic field) creates in the fluid an internal moment of momentum. The 
equation of variation of the internal moment of momentum was given in a general 
form in the monograph [I]. 

Equations which define ferromagnetic suspensions when the internal moment of 

momentum can be neglected were derived in [2,3]. Here ferro magnetic suspensions 

are conatdered to be monophase media, and the presence of ferromagnetic particles 

is taken into account by the introduction of the internal moment of momentum of a 

unit volume and the magnetization intensity of suspension which is related to the 
number of particles, their relative disposition, and individual particle magnetization 

intensity. The equation defining the motion of such medium without allowance for 
the hydro magnetic effect was first derived in [4]. 

1. General solution of equations defining magneti- 
zable fluid with internal rotation in the case of 
cylindrical symmetry. A closed system of equations defining the motion 

of a magnetizable fluid with allowance for the internal moment of momentum was 

derived in[4]. When the medium is nonconducting the incompressible the phenomen - 

ological coefficients are independent of the magnetic field. These equations without 
allowance for cross effects ferrohydrodynamics approximation [2] are of the form 

divu=O, p%= (1.1j 

dK 
- = 6AK + &V div K - 

dt 
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dM -=I-l[KxM] - MyXH , div(H+4nM)=O, 
dt rot H = 0 

where U, p, p, K and M are, respectively, the vdocity, density, presiure, inter- 
nal moment of momentum of a unit volume, and the medium magnetization intensity; 

H is the magnetic field; B = rot u / 2 is the vortex vector, and cl, z,, 6, 6,, I 
and 7 are phenomenological coefficients which here are assumed constant. We assume 

that the magnetic permeability coefficient X is independent of temperature. In this 

case the energy equation is separated from the system of Eqs. (1.1) that defines the 

motion of incompressible fluid and is not considered here. 

we assume for simplicity that 4nM (( H. This inequality is confirmed by 

experiments. It can be assumed that throughout the fluid the magnetic field is equal 

to the external homogeneous field. The last two of Eqs.(l. 1) are identically satisfied. 

We shall consider the steady motion of fluid in a homogeneous magnetic field ro- 

tating in some plane at constant angular velicity af . The motion is assumed to be 
cylindrically symmetric about some axis perpendicular to the plane of field rotation. 
We select the system of cylindrical coordinates r, Cp, Z so that the z-axis is the axis 

of symmetry. We assume that K, = K, = 0, K, = K, u, = u, = 0, 
up = u, !&, = f&. = 0, and SJ,, = Pf and that all functions depend only on 

r , i. e. that d / dt = d / &p = 8 / a,z = 0. The stable solution of the fourth 

equation of system (1.1) is of the form 

(1.2) 

where MI, and AIL are projections of the magnetization intensity vector Mon the 

direction of the magnetic field H and on the direction normal to the magnetic field 

vector, respectively, and H is the absolute intensity of the magnetic field. 
using solution (1.2) of the equation of magnetization intensity we obtain 

(1.3) 

The equations of motion and moment of momentum (the second and third equations 
of system (1.1) projected on the coordinate axes cp and z , respectively), with all- 
owance for equality (1.3) and assumptions made above, are of the form 

6 dro i 

d=K 
-+ 

1 dK -- 
r dr -+(K-IQ)+M,H=O 

s 

Integration of the first equation of system (1.4) yields 

cl =_ r(K+G') 1 
1 ’ y= I-CZH ’ 

fi+, Cl’ = const (1.5) 

We seek the general solution of Eqs. il. 1) on the assumption that 22Q2f2(( 1. 
The system (1.4) with allowance for formulas (1.5) and (1.2) has a general solution 
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of the form 

(1.6) 

Q = p,PH2 

where I, (7 1 4 and & (r / I) are modified Bessel and Hankel functions of order 

n , respectively. constants of integration Cl, C,, C,, and C, are determined by 

boundary conditions. 

2. Motion of a magnetizable fluid between two 
cylinder, in rotating magnetic ff rid. Letusconsidertheflow 

of fluid between two coaxial cylinders of radius R1 and Rz, R, ( R,, rotating 
around their axis at angular velocities a2, and Q, (here and in what follows subscripts 
1 and 2 relate to the inner and outer cylinder, respectively). The cylinder axis is nor- 
mal to the plane of the magnetic field rotation. As the boundary conditions we take 
the conditions of sticking at the solid boundary for the velocity and moment of momen- 
tum of motion of a viscous ferro fluid. These conditions are of the form 

u (Ri) = ktjR,, K (Ri) = IQt, i = 1, 2 (2.1) 

Conditions (2.1) yield a system of linear equations for the determination of consta- 

nts Ct, Car C3, and C, that appear in formulas (1.6). Solving that system we obtain 

C,=c(Q+l)-Q- a (Q + 1) C, + b (Q + 1) C, (2.2) 
c,z = A-l {UC, (R, / I) + bl (co1 - c) - UC, (R, / I) + bl x 

(02 - 4) 
C, = A-l ([I,, (R, / 1) - al(w, - c)- [I, (R, / 1) - al(o, - c)} 

C, = RI2 (q - c,) - 2yZR,I, (R, I 1) C, + 2yZR,K, (R, I I) C, 

a = 2yZ RJ, U?,/U - R,f, @2/l) 

(Rla - fW cQ + 1) 

b = 2yZ RIKl (RI/l) - R,KI (Rdl) 

(RI2 - Ri2) (Q + 1) 

A = II,, (R, / 1) - al[Ko (R, / I) + bl - k, (R, / 1) - al[Ko (R, / Z) + bl 
Passing in fomulas (1.6) and (2.2) to the limit 8, -+ coo, in the case when 

the two cylinders are stationary (or = ws = 0) we obtain 

(2.3) K 
- = c 

‘“f [ 
1 C=.& 

u 
- = 2yl 
52f 

K, & [K’ (+) -- RIK;(R1’z) ] 
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solution (2.3) defines the flow of a magnetizable fluid outside a stationary cylinder. 
Analysisof this solution shows that the flow outside a stationary cylinder is of opposite 

direction to that of field rotation. 

Passing in formulas (1.6) and (2.2) to the limit RI -+ 0, for the flow inside 
a stationary cylinder we obtain 

(2.4) 

Formulas (2.4) were first obtained in [5,6]. Their analysis shows that inside a 

stationary cylinder the flow rotates in the same direction as the field. This result is 

in qualitative agreement with experimental data [7,8]. 

The stationary cylinders of radii RI and R, are subjected to moments M, 
= M,e, and iM, = M,e’(e is the unit vector of the z -axisJinduced by the magnet- 

izable fluid forcescalculated per unit height of cylinder, They are associated with the 

presence of surface friction and of the internal moment of momentum 

-l/Ii z (Z~‘CRi~prcp + 2nRiQZr) Ir=Ri-ni, nl = 1, n2 = - 1 (2.5) 

where PVP are stress tensor components acting in the magnetizable medium, and 

Q *r is the component of the tensor of the internal moment of momentum flow 

of the medium. In the absence of an external cylinder moment M, of forces acting 

on the inner cylinder is 

61K1 (R,il) 
K, (RI/O 1 

(2.6) 

and in the absence of an internal cylinder moment i&f, of forces acting on the internal 

cylinder is 

Ms = nR,QISl, Wo VW) + 2 (Q + Y) U,(R,/z) (2.7) 
~8 (Q + 1) (1, (R2/4 ---a) 

Let us consider the flow of magnetizable fluid between two coaxial cylinders one 
of which (for instance, the external) is fixed or rotates at specified angular velocity, 
while the other is free. 

The flow of fluid is defined by formulas (1.6) with constants C,, ca, cs, and 
c, determined by the following boundary conditions at the free cylinder and at the 
cylinder rotating at the specified angular velocity Q, : 

du II 
--- 

dr r 
- -L(K - In)) Ir_ = 07 (2-8) 2X* 
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The first two conditions of (2.8) are corollaries of the laws of conservation of the 
momentum and moment of momentum flows at the free surface, while the last two 

of these are conditions of sticking at the solid wall. 

Substituting solutions (1.6) into boundary conditions (2.8) we obtain for constants 

Ci, C,, Cs, and C4 a system of linear equations. 
In the absence of the external cylinder (@a = 0, Rs -+ 00) Eqs. (2.8) are simpli- 

fied, and for the velocity of fluid outside the free cylinder and for the angular velocity 

% of the rotating cylinder we obtain 

QQfW QQ, 2115 
‘=-Z(Q+l)Rr ’ ‘c=- Z(Q+l)R ’ R =-j- (2.9) 

The flow of magnetizable fluid between two coaxial cylinders of which the inner 
is free was earlier considered on theassumptionthat rs = 0 and 6 = 0 [9] (3. 

The solution of the free cylinder problem in infinite magnetizable fluid (formula 
(2.9)) implies that the cylinder must rotate in opposite direction to the rotation of the 

field. 
Let us consider the case when both the inner and outer cylinders are free. The 

fluid flow is defined oy formulas (1.6) with constant C,, C,, Cs, and C, that are 
determined by conditions at the free surfaces of cylinders. We have 

(2.10) 
u = Qfr, K = IQf 

Equalities (2.10) show that the complete system consisting of two free cylinders 
and fluid between them rotates as a solid body at angular velocity equal to that of 

the field rotation. This is in agreement with experimental data obtained in the 

Ferrohydrodynamics Laboratory of the Stavropol Teaching Institute. 

Authors thank V. V. Gogosov and A. C. Tseber for useful discussion and valuable 

remarks. 

1. S e d o v, L. I. Mechanics 
Woltors-Noordhoff, 1971. 

REFERENCES 

of Continuous Medium, Vol. 1. (English translation), 

2. Gogoso v, V. V., Vasil’eva, N. L., T a k m a r o v, N. G., and 

Shaposhnikova, G. A., Equations of Hydrodynamics of Polarizable 

and Magnetizable Multicomponent and Multiphase Media: Discontinuous 

Solutions. Investigation of discontinuous Solutions with Magnetic Permeability 

Jumps. Izd. MGU, Moscow, 1975. 

3. Gogosov, v. v., Naletova, V. A., andShaposhnikova, G. A., 
Hydrodynamics of disperse systems interacting with an electromagnetic field. 

Izv. Akad. Nauk, SSSR, MZhG, NO. 3, 197’7. 

*) Tsebers, A. 0. g Characteristic rotations of particles in hydrodynamics of magnet- 

izable and polarizable media. Candidate’s dissertation. Riga, 1976. 



Motion of magnetizable fluid in a magnetic field ‘I 15 

4. Suiazo v, V. M., On the asymmetric model of a viscous electromagnetic 
fluid. PMTF, No. 2, 1970. 

5. Suiazov, V. M., Motion of a magnetizable fluid under the action of a 
rotatiq magnetic field, PMTF, No. 4, 1970. 

6. Suiazov, V. M., The notion of ferrosuspensions in rotating homogeneous 
magnetic fields. Magnitnaia Gidrodinamika, No. 4, 1976. 

7. M o s k o w i t z, R and R o s e n s w e i g, R E., Nonmechanical torque-driven 

flow of ferromagnetic fluid by an electromagnetic field. Appl. Phys., Letters, 

Vol. 11, No. 10, 1967. 

8. Mailfert, R andMartinet, A., Flow regimes for a magnetic suspension 
under a rotating magnetic field. J. Phys., Vol. 34, No. 2-3, 1973. 

9. Tsebers, A. 0.) Ferrohydrodynamics as the hydrodynamics of a system with 
internal degrees of freedom. Collectn. : Physical Roperties and Hydrodynamics 
of Dispene Ferromagnetics. Sverdlovsk, 1977. 

Translated by J. J. D. 


